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MEASUREMENT OF HIGH TEMPERATURE STRAIN BY T1-1E
LASER-SPECKLE STRAIN GAUGE **

Ichirou Yamaguchi***

/A7F*

We have developed a method in which the surface strain of

an irradiated region is found without any surface contact by

automatically measuring the movement of the speckle pattern

which occurs when the roughened surface was irradiated photo-

electrically with a laser beam [1]. The characteristics of

this strain gauge are that: (1) the influence of rigid body

motion is eliminated automatically, and the longitudinal strain

is directly obtained; (2) the sensitivit y of the strain measure-

ment is 10 -5 , and this is very high for an optical method;

(3) since the gauge Length is given by the laser beam diameter,

it is taken as less than 1 mm. We made this portable type

strain gauge for applications to specimens for which it is difficult

to use resistance wires. We shall report on the basic principles
	 s j

of this strain gauge, and the results of measuring strain at

high temperatures, for which this strain gau ge was used.

*Numbers in mar g in indicate foreign Pagination.
** Manuscript received May 15, 1982 (Presented at Strain

Measurement Symposium, January 20, 1982). Science and
Chemical Laborator y of Optical Sciences Measurement
Laboratory

'^** The Institute of Physical and Chemical Research
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2. Basic principles

As a basic principle, this strain gauge has a close relation-

ship with the diffraction grating strain gauge [2 - 5]. This

strain gauge is for discovering a strain by uetecting the change

in the direction of diffracted light when diffraction intervals

which were engraved on a mirror surface at regular intervals

z2ceive shrinkage from the surface strain and also by determining

the change in the diffraction grating intervals. There are some

examples of this strain gauge having been used for measuring strain

at a high speed [2 - 41. Also, although it is not a real Limp

measurement, the distribution of strain is cbtained if the distribution
of the change of the diffraction grating intervals is measured by	 /677

the distribution of the directions of diffracted light, by exposing

• laser beam to each point of the negatives on which the image of

• sample surface has been photographed and on which a diffraction

grating is printed [6] . . It is considered that a general roughened

surface is a diffraction grating which has irregular -MCC

and speckle is equivalent to what is called its diffractek: speckle.

Since the diffraction grating intervals are not constant, the space

between the bands is not constant, ^ :,nd it is spatially distributed

continuously and irregularly. Th p r=,ore, it is understood that

the speckle moves by a displacement and a deformation of this ir-

regular diffraction grating. Movement of the speckle by a

displacement anti a eeformation of th ^ surface, and
the deformation whic l i accompanies them is precisely
analyzed by c!)mbi.iing the theory of wave optics and the methods of
correlation analysis [7]. The physical meaning of the derived

relationship is simple. Namely, the movement of the speckle is

equivalent to the movement of the diffracted light when a diffraction

grating with certain equivalent intervals undergoes displacement

and deformation. The Oiffraction grating intervals in this case

are decided by the position of the center of curature of the incident

wave surface and ti position of the observation point. On the

2

D 11
F.osa..n --	 7	 ^ s^4r f_ i	 _	 ^•	 .s



9

other hand, the speckle deformation occurs because the area of

the roughened surface which is irradiated changes place.

Therefore, not only the strain component but also the rigid body

motion components (translation and rotation) generally overlap.

However, (1) Take the differenceof the speckle movement caused

by each beam by irradiating the same point with two symmetrical

beams, or (2) Take the difference of speckle movement at two

symmetrical points by using a single beam [8]. By using either

method, the effect of rigid body motion is automatically cancel-

led out, and only the component of the longitudinal strain is

separated.

3. O_tical distribution

Fig. 1 exhibits the layout which was used in this experiment.

The method is to detect speckle movement at two points by using

a single beam. A He-N e laser is used and, depending on the

reflectance of the samples, a 5 MlV laser and ar. approximately

50 mW laser were properly used. The beam diameter at the samples

which gives the gauge length can be adjusted freely depending on

the lens. For the detection of speckle movement, the speckle is

scanned by a one-dimensional semiconductor image sensor and the

output is read on a microcomputer 	 SPECIMEN
STRAIN	 IMAGE
GAUGE	 Lo	 SENSOR

r4p
Lod

LASER

IMAGE
SENSOR

MICRO	 FLOPPY

COMPUTER	 DISK

TERMINAL	 SYNCHROSCOPE

Fig. 1 Basic display of laser speckle strain gauge	 /677
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and speckle movement is calculated as the peak position of the

mutual correlation function between outputs around the area

where strain arises. The laser beam and image sensor are set

up in order to be coplanar. The beam is made to irradiate

almost perpendicularly in order to maintain a uniform beam

strength on both sensor surfaces. However, as is mentioned as

follows, it is not necessary to be accurately perpendicular.

4. The retical relationshi p s of s peckle movement

The movementywhich occurs in the speckle on the image sensor

from the deformation of the specimen, is given in the following

equatio^s, if the incident beam and the surface made by the

sensors are the x-z surface in the system of coordinates in Fig. 2.
OBJECT PLANE

Y

SENSOR PLANE
Fig. 2. System of coordinates for determining speckle

movement on im.aRe sensor.

Ax = a:( 
Locos29, 

rcos 90)
Lscos 9^

ff Locos 9: sin 9s-a
`\	 L, cos 90 — 

-t- sin 9^>)

- Lo[E^r( 
sin 0., .^ tan 9„,
cos 90

cos ry, ^^ \ 1
cos 90	 JJ
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irradiated area,	 .Q.. Q,. Q,)	 the rotation vector, (E.,, ems., Eri)

the strain component. Also,	 (.► 	 des(-r:,)es the angle of

incidence of the beam, L s the radius of curvature of the wave

surface of the beam on the material surface, 	 0(,. L„	 is

the angle made by the surface normal line and the sensor, and

the distance between the irradiation point and the sensor.

/678
If the difference between the speckle movements which

are detected by the two sensors in Fig. 1 is taken, most of

the terms in equation (1) are eliminated, and

dAx = Ax0o )— Ax( — 60 ) = — 2Lac,,tan&

	

— 2a, sin 0.	 ..............................	 (2)

Namely, only the longitudinal strain 	 fx=, which is

parallel to the surface made by the sensor and the incident beam

and the term parallel to the translation	 °_`	 which is per-

pendicular to the naterial surface, remain. Also, it does not

depend on the angle of incidence	 ,y,, , or on L s , which is

determined by the lens power and the position in which it is
t

inserted between the laser and the matarials. Therefore, when

. a•:	 is sufficiently small, the strain value is obtained by

using the following equation from JA, which is observed.

e.,= -Ax/2Lotan Oo	 (3)

However, for the correlation peak of the output of the one

dimensional sensors to appear clearly when the deformation

given to the material is detected, the speckle motion component

AY. which is perpendicular to the sensor must be sufficiently

small. More accurately, it is necessary that A, be smaller

than the total of the mean diameter 	 ALo;'&c	 ca	 laser wave

length: U'; beam diameter) of the speckle on the sensor and the

width of the sensor.

5
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In the method which uses two symmetrical beams and a sensor,

the difference of speckle movement does not receive the influence of

17	 and is proportional to only 1 -	 However, the arrangement

becomes more complex, as a system which alternately irradiates

the beams, etc., becomes necessary [1].

6. Detection of speckle movement

The image sensor which was used for this experiment was a

RETICON RL 1728 H which is an MOS type photodiode array, and pitch

was 15 um, width was 14 um, and number of elements was 1728. It

is not necessary to use all of the output of the 1728 elements for

the calculation of correlation, and a sufficiently clear correla-

tion peak was obtained from artund 512 elements. Fccording to
this, the correlation calculation time is greatly shortened. The

output signal of the sensor is input to a microcomputer (LSI-11/2,

64 KB) by an A/D converter with clock 25 KH Z , 12 bit (DAT°L-STLSI-2

is used). The correlation calculation was performed after this

signal was made binary depending on whether or not it was above

the mean level or below the mean level, and shortening the

calculation time was performed.

6. Comparison experiment with a resistance wire strain gauge

The relation=ship mentioned above was experimenta:ly confirmed

by putting a 5 mW laser with 0.9 mm 1/e' diameter in the middle

part of a brass specimen which has the standard configuration

shown in Fig. 1 (length 100 mm, width of the neck 20 mm, thickness

1 mm) and applying a tension in the x direction. Surface treatments

such as rough shear or painting, etc. were not performed on this

specimen. A resistance wire strain gauge of 2 mm gauge length

was put on the right backside of the beam spot, and tha output was

also entered in the microcomputer. Fig. 3 exhibits she output

wave shapes (a) of both sensors bef,)re tension, (b) the output wave

shapes after tension, and the mutual correlation function

between the wave shapes of each sensor.

6
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(a)

(b)

(c)

Fig. 3. Output wave shapes of each image sensor (before	 /678
loadin g, (a) after loading;(b) and mutual correlation
function; (c) of wave shapes before and after
loading).

The change of the strain by a resistance wire strain gauqe in

this case is 200 microstrain and the area of the correlation peak

is proportional to it. In order to quickly perform the detection

of the correlation peak position; first of all, the correlation

function toward the shifting slide which was thinned is calculated

'd	 j% t Y



i

0. aft -•WV,. 0 _^

OF NOJR f4UAU I V,

and the maximum position is found among them. Next, only the

region around the maximum position is calculated using small inter-

vals and the final peak position is found.

Strain f. (10f6)

Fig. 4. The reading of the resistance wire strain gauge
and speckle movement on each image sensor and the
difference '.)etween them.

Figure 4 exhibits the values of the speckle movement obtained

by stretching a portion of the specimen in 100 Um steps and

adding up compared to the reading of the resistance wire

strain gauge. The speckle movement on each sensor shows a complex

action as the strain and the effects of rigid body motion differ

depending on the position of each sensor. However, it is under-

stood that the difference between is sufficient on the

slope of the straight line which wrs calculatee in Equation (3).

However, it is considered that the reason why the straight line

does not go through the origin is that the output of plane transla-
tion 7, 1)	 shown in Equation (2) is large at the initial time when

the load is applied.	 /679

7. Strain measurement at high temperatures

It became clear from the above experiment that this method

functions as a noncontact strain gauge. The amount which is

measured by this strain gauge is longitudinal strain itself which

e
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is defined geometriTally as is shown in the theoretical analysis.
Therefore, we c.,nsidered an experiment using this method in the
field, where it is 11ifficult to use a resistaice wire strain gauge.
First of all, the strain from heated and cooled metals was chosen
as an immediate subject, and as a subject in which the strain
change is rather slow. Even if the specimen is at a high tempera-
tare, the strain as a total of therrinl strain and mechanical strain
can be measured by this strain gai.ge  if the effects on the speckle
movement of convection, etc. of the air can be ignored. The
measurement time of this strain gauge is constrained by the correla-
tion calculation time according to the method in which speckle
movement is found every time as the above mentioned static
strain measurement. For example, if the number of correlated
points is 40, the measurement time is about 10 seconds.

In the case when deformation occurs continuously, such as the
strain with a temperature change, the best way is that the output
signal of the image sensor is read continuously into auxiliary
memory, and the correlation function between the approximate data
is calculated after summarizing them later. We took the method
of writing the data, which was A/D converted to the floppy disk
which belongs to the microcomputer. The sample intervals in this 	

3

case are mainly determined by the writing speed of the disk. In
	 i

the case when 750 elements of each sensor output are entered, the 	
r

writing speed of the disk was about 4.3 sec.

As a subject, the strain from heating and cooling of the tip
	

i
of a cylindrical surface of a 20W soldering iron was measurer.
Fig. 5 exhibits a picture of the equipment. The data f. 80

	 1

repetitions can be written on a disk (capacity 1 MB). A thermo-
couple wars installed at a position of about 1 mm from the edge
of the irradiat'.on spot, and the temperature was also entered
into the computer at the same time. Since the reflectance of the

	 I

surface of a soldering iron is low, an output of approximately
50 mW was used for "he  laser and. by using a lens of 300 mm focal
length, a spot of about 2 mm diameter was focused on the measurement

9
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Fig. 5. The measuro—ment position of the high temperature
strain of a soldering iron.
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Fig. 6. Results of measurements
of the temperature change of the
tip of the soldering iron and the
strain toward the axis of the
soldering iron.
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Fig. 7. Temperature of the tip
of the soldering iron when it is
heated anc which is displayed
on synchrosrope, and the
measurement results of the time
change of strain toward the axis.
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point. As is shown in Figure 5, the laser light source was

not included in the strain gauge and the gauge was put on a

portable type laboratory table with wheels. Since it was deter-

mined that light does not enter the image sensor except from the

spot position, measurements can be performed in a bright room.

Fight seconds after the soldering iron was turned on, the output

of both sensors was input every 4.3 seconds.

Figure 6 exhibits the strain measurement results with

respect to the axis of the soldering iron.	 In this case the

value of the strain was directly calculated by Equation (3). No

strain was found 20 seconds before the soldering iron was turned

on; as temperature change was fast, the strain change was too large,

and the clear correlation peak shown in Figure 3 (c) was not

obtained. After this point was passed, the change of the strain

became mild, and always a clear correlation peak began to occur.

The temperature was found by inputting in a microcomputer after

the terminal voltage of a copper constantan thermocouple 	 /680

maintained at zero degrees with ice water was amplified by direct

current in order for the maximum value to become below 5V, and

12 bit A/D conversion was performed. It is considered that the

reason why the temperature varies is that the contact condition of

the thermocouple was incomplete. However, the value of strain

always changed smoothly and it almost followed the mean temperature

change. In this case the minimam strain change which it is possible

to detect is that the difference of speckle movement is equivalent

to the case which is equal to pitch 15 um of the image sensor, and

this is AA  microstrain in the current arrangement. On the other

hand, the upper bound of the measurement range can be extended as

much as we can by adding small changes as the above. However, in

the case when the irradiation point begins drifting, it is necessary

to adjust it by the proper method. According to the above method,

the number of measurement points is constrained by the writing

capacity of the floppy disk. As one of the methods of eliminating

constraints, shortening the calculation time of the correlation

11
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function has been considered. For phenomena such as strain by the

temperature change, if sample intervals become short, speckle

movement becomes small and the calculated point of correlation can

be generally decreased. Therefore, a method was used in which

512 element of image sensor output is input to microcomputer and the

peak was found by calculating the correlation with previous

output with 12 points. In this case the intervals for samples were

5.2 sec. The temperature and the strain value in each step were

written in the interval memory of *he microcomputer and those time

changes can be displayed on a synchroscope or record meter at the

time when all the measurements have been finished. Figure 7 exhibits

that the temperature and the strain measurement results toward

the axis are displayed on the synchroscope, and the arm of the image

sensor of the strain gauge was obtained parallel to the axis of

the soldering iron. The soldering iron was turned on one minute

after the beginning of the measurcment, and it is perfectly under-

stood that the soldering iron began expanding from that point.

Figure 8 exhibits the relationship between temperature and strain.

The figure clear;v shows the proportional relationship between

temperature change and strain. The applied slope of the straight

line is 22.9 x 10 -60 . On the contrary,

progress of strain after power was cut.

cut is also after one minute. The chan

is very smooth. Figure 3.0 exhibits the

temperature and strain in this case.

Fig. 9 ex:iibi is the

The time when current was

ge of strain in this case

relationship between

.j

Compared to Figure 8 the deviation from the straight line at

high temperature and low temperature is conscpicuous. Also, the

slope of the straight line becomes 17.2 x 10 -60 a% d this is very

different from the case of heating.

12
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The following can be assumed from TLhe above result. According

to the Science Chronological Tables, the coefficient of linear 	 /681

expansion of copper for the Material of the soldering iron is

16.7 x 10 -6 °. Therefore, in the case of heating, it is considered

that ( 2.9 - 16.7) x 10 -6 = 6.2 x 10 -6 /deg is the mechanical

strain from the thermal stress per 1°C. On the other hand, the

mechanical strain in the case of cooling becomes (17.2 - 16.7)

x 10 -6 = 0.5 x 10 -6 /deg. It shows that cooling is uniformly

perforn.-I, and since the temperature gradient is small, almost no

thermal strain by free contraction occurs. The circumferential

strain can be measured if the arm of the image sensor is trans-

versed to the arm of the soldering iron. Figure 11 exhibits one of

the examples of the results of the heating.

The following can be assumed from the above result. According

to the Science Chronological Tables, the coefficient of linear

expansion of copper for the material of the soldering iron is

16.7 x 10 -6/deg. Therefore, in the case of heating ; t is con-

sidered that (22.9 - 16.7) x 10 -6 = 6.2 x 10 -6 /deg is tr 2 mechanical

strain from the thermal stress per 1°C. On the other hand, the

mechanical strain in the case of cooling becomes (17.2 - 16.7)

x 10
-6
 = 0.5 x 10 

-6
/deg. It shows that cooling is uniformly rer-

formed, and since the temperature gradient is small, almost no

thermal stress occurs and only the thermal strain by free con-

traction occurs. The circumferential strain can bE measured if the

arm of the image sensor is transversed to the arm of the soldering

iron. Figure 11 exhibits one of the examples of the results of the

heating.

za

10c

c

c
9	 18

TIME (MIN)

Figure 11. The temperature at heating of the tip of the soldering
iron displayed on the synchroscope and the measurement
result of the time change of circumferential strain.
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A remarkable discontinuity which is considered to have

occurred because of imperfect contact of the thermocouple is seen,

but strain changes almost continuously. In our measurement

rezult there is generally discontinuity in the strain change

at the time of heating although the discontinuity is very small.

on the other hand, almost no discontinutiy was seen at the time

of cooling. Therefore, it can be assumed that the cause of the

discontinuity is not from oscillation of the strain gauge, etc.

It is considered that correlation was probably insufficient and

speckle movement on image sensor exceeded the 12 point correlation.

8. Examination

It has been reported that the examples of strain measurement

at a high temperature by optical methods are ones for which the

speckle interference method was used [9], the applications of the

Moire method [10) and furthermore, the method for which digital

image processing is used together with the Moire method [11],

etc. In these methods, a two-dimensional distribution is obtained;

on the other hand, it is difficult to find directly a strain

value in real time, and strain sensitivity is about 10 -4 at the

highest. Printing a diffraction grating on the surface is necessary

for the Moire method. It is not necessary to process the surface

for the speckle interference method, but since the obtained

diffraction pattern is the contour of the in-plane displacement, it

must be differentiated. This method, which is basically a measure-

ment of strain at every point, has the following characteristics.

It is possible to find strain directly in a short time without any

surface contact and the gauge length can be taken as less than 1 mm,

with a strain sensitivity of approximately 10 -5 . The measurement

temperature this time was less than approximately 250°C; but an

experiment for higher temperatures has also been prepared. The

problem of most concern in this case is the effect on the speckle

movement of air convection.	 /682

If the gradient of the refractive index of the air changes,

the speckle moves and, during the measurement, steps must be taken

to control the changes in temperature gradient. For this, methods

15
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of putting a specimen and an image sensor in an exhaust cell and

removing the intervening air were considered. Also, in the case

when the temperature becomes high and the specimen radiates if

an interference filter is used for which wavelength is suitable for

the laser light, speckle can only be set up with an image sensor

'y controlling the radiated component. Because of that, this

method can be applied.

The surface for which this method can be used could be anything

if it :an diffusely reflect light. However, the case when the above

speckle relationship is formed is when the fine structure of the

measurement surface is sufficiently fine compared to the laser

beam diameter. Even if a mirror reflection component occurs,

such as from a smooth metallic surface, there is no problem since

the speckle in the position where the mirror reflected light does

not reach has a high contrast, and it moves according to the above

rule. The samples which have been successfully measured so far

are metals, rubber, paper, plastic and painted surfaces under

ordinary temperature. However, it might be necessary for many

samples to use a strong Ar laser, etc. rather than the He-Ne

laser which was used in this experiment as the surfaces oxidize and

the reflection rate decreases at high temperature. However, it is

not necessary to also change the optical arrangement for that case,

as the movement of speckle does not depend on the wavelength.

The minimum sampling interval in this experiment is about

1.65 seconds, by using a method of writing the outputs of image

sensors in order on a floppy disk. In order to shorten the inter-

vals easily, for examples, the output waveform of the image sensor

is continuously stored in an analog data recorder. And later on,

if the method of calculating speckle movement by reading the output

waveforms gradually is taken, sample intervals can be moved to the

40 msec scan cycle of the image sensor. Furthermore, instead of

calculating correlation by microcomputer the detection of speckle

movement was made high speed by using an IC chip for calculation

of the correlation, and calculating the repetitions of output of
r
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a spatial filter photodector [12]. In the case when the spatial JI

filter photodetector is used, it is necessary to decide the sign of

speckle movement. The possibility of detecting the sign is being

studied currently by performing a simulation experiment of the

spatial filter detector by using image sensor and microcomputer.

s<
Since shearing strain e,w is effectively the same as in-plane

rotation jQ„ is not suitable for the measurement of shearing

strain. (Refer to Equation (1)). Therefore, it becomes necessary

for the general measurement of strain to put out arms of the image

sensor in three directions like a rosette gauge, and the equipment

becomes quite large scale. However, it might be possible to

implement a rosette type system if the equipment can be made much

smaller by using a semiconductor laser and fiberoptics which have

been making rapid progress.

9. Conclusion

Strain below 250°C could be completely measured automatically

by simplifying laser speckle which was previously developed, and by 	 ^]

applying it to strain measurement at high temperature. Gauge

length was 2 mm, strain sensitivity was about 2 x 10 -5 . This

strain gauge is for detecting the shrinkage of surface fine

structure with light and for measuring itself, and a dummy gauge is

not at all necessary. The shortest measurement time is 1.6

seconds with the current equipment. It is considered that this
C

strain gauge can definitely be used up to 300°C. Problems which are

considered for the measurement at higher temperature and also

shortening the measurement time were also studied.
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